In the following figure, AD and CE are medians of ∆ABC. DF is drawn parallel to CE. Prove that: (i) EF = FB, (ii) AG: GD = 2: 1
In the following figure, AD and CE are medians of ∆ABC. DF is drawn parallel to CE. Prove that: (i) EF = FB, (ii) AG: GD = 2: 1

Selina Solutions Concise Class 10 Maths Chapter 15 ex. 15(E) - 14

Solution:

(i) In

    \[\vartriangle BFD\text{ }and\text{ }\vartriangle BEC,\]

    \[\angle BFD\text{ }=\angle BEC\]

[Corresponding angles]

    \[\angle FBD\text{ }=\angle EBC\]

[Common]

Hence,

    \[\vartriangle BFD\text{ }\sim\text{ }\vartriangle BEC\text{ }by\text{ }AA\]

criterion for similarity.

So,

    \[BF/BE\text{ }=\text{ }BD/BC\]

    \[BF/BE\text{ }=\text{ }{\scriptscriptstyle 1\!/\!{ }_2}\]

[Since, D is the mid-point of BC]

    \[BE\text{ }=\text{ }2BF\]

    \[BF\text{ }=\text{ }FE\text{ }=\text{ }2BF\]

Thus,

    \[EF\text{ }=\text{ }FB\]

 

(ii) In

    \[\vartriangle AFD,\text{ }EG\text{ }||\text{ }FD\]

and using BPT we have

    \[AE/EF\text{ }=\text{ }AG/GD\text{ }\ldots .\text{ }\left( 1 \right)\]

Now,

    \[AE\text{ }=\text{ }EB\]

[Since, E is the mid-point of AB]

    \[AE\text{ }=\text{ }2EF\text{ }\left[ As,\text{ }EF\text{ }=\text{ }FB,\text{ }by\text{ }\left( 1 \right) \right]\]

So, from (1) we have

    \[AG/GD\text{ }=\text{ }2/1\]

Therefore,

    \[AG:\text{ }GD\text{ }=\text{ }2:\text{ }1\]