Let S be the set of all real numbers. Show that the relation R=\left\{(a, b): a^{2}+b^{2}=1\right\} is symmetric but neither reflexive nor transitive.
Let S be the set of all real numbers. Show that the relation R=\left\{(a, b): a^{2}+b^{2}=1\right\} is symmetric but neither reflexive nor transitive.

Solution:

\mathrm{R}=\left\{(\mathrm{a}, \mathrm{b}): \mathrm{a}_{2}+\mathrm{b}_{2}=1\right\} and \mathrm{a}, \mathrm{b} \in \mathrm{S} (As given)

Non-Reflexivity:
Assume a be an arbitrary element of S
\mathrm{a} 2+\mathrm{a} 2-2 \mathrm{a} 2, which is not equal to 1
\Rightarrow(\mathrm{a}, \mathrm{a}) \notin \mathrm{R}
Therefore, R is not reflexive.

Symmetric:
Assume a and \mathrm{b} \in \mathrm{S}, such that (\mathrm{a}, \mathrm{b}) \in \mathrm{R}
\Rightarrow \mathrm{a} 2+\mathrm{b}_{2}=1 \Rightarrow \mathrm{b}_{2}+\mathrm{a}_{2}=1 (As addition is commutative) \Rightarrow(\mathrm{b}, \mathrm{a}) \in \mathrm{R}
Therefore, \mathrm{R} is symmetric.

Non-Transitivity:
Assume \mathrm{a}, \mathrm{b} and \mathrm{c} \in \mathrm{S}, such that (\mathrm{a}, \mathrm{b}) \in \mathrm{R} and (\mathrm{b}, \mathrm{c}) \in \mathrm{R} \Rightarrow \mathrm{a}_{2}+\mathrm{b}_{2}=1 and \mathrm{b}_{2}+\mathrm{c}_{2}=1
On adding both the equation, we obtain
\begin{array}{l} \Rightarrow \mathrm{a}_{2}+\mathrm{b}_{2}+\mathrm{b}_{2}+\mathrm{c}_{2}=1+1 \\ \Rightarrow \mathrm{a}_{2}+2 \mathrm{~b}_{2}+\mathrm{c}_{2}=2 \end{array}
\Rightarrow \mathrm{a}_{2}+\mathrm{c}_{2}=2-2 \mathrm{~b}_{2}, which is not equal to 1
\Rightarrow(\mathrm{a}, \mathrm{c}) \notin \mathrm{R}
Therefore, R is not transitive.
As a result, \mathrm{R} is symmetric but neither transitive nor reflexive.