The line segment joining the points \mathrm{A}(3,-4) and \mathrm{B}(1,2) is trisected at the points \mathrm{P}(\mathrm{p},-2) and

    \[Q\left(\frac{5}{3}, q\right) \text {. Find the values of } p \text { and } q \text {. }\]

The line segment joining the points \mathrm{A}(3,-4) and \mathrm{B}(1,2) is trisected at the points \mathrm{P}(\mathrm{p},-2) and

    \[Q\left(\frac{5}{3}, q\right) \text {. Find the values of } p \text { and } q \text {. }\]

Let P and Q be the points of trisection of A B.

=> P divides A B in the radio 1: 2

So, the coordinates of P are

    \[\begin{aligned} &x=\frac{\left(m x_{2}+n x_{1}\right)}{(m+n)}, y=\frac{\left(m y_{2}+n y_{1}\right)}{(m+n)} \\ &\Rightarrow x=\frac{\{1 \times 1+2 \times(3)\}}{1+2}, y=\frac{\{1 \times 2+2 \times(-4)\}}{1+2} \\ &\Rightarrow x=\frac{1+6}{3}, y=\frac{2-8}{3} \\ &\Rightarrow x=\frac{7}{3}, y=-\frac{6}{3} \\ &\Rightarrow x=\frac{7}{3}, y=-2 \end{aligned}\]

=> the coordinates of \mathrm{P} are \left(\frac{7}{3},-2\right)

(p,-2) are the coordinates of P.

p=\frac{7}{3}

Q divides the line AB in the ratio 2: 1

=> the coordinates of Q are

    \[\begin{aligned} &\mathrm{x}=\frac{\left(\mathrm{mx}_{2}+\mathrm{mx}_{1}\right)}{(\mathrm{m}+\mathrm{n})}, \mathrm{y}=\frac{\left(\mathrm{my}_{2}+\mathrm{my}_{1}\right)}{(\mathrm{m}+\mathrm{n})} \\ &\Rightarrow \mathrm{x}=\frac{(2 \times 1+1 \times 3)}{2+1}, \mathrm{y}=\frac{\{2 \times 2+1 \times(-4)\}}{2+1} \\ &\Rightarrow \mathrm{x}=\frac{2+3}{3}, \mathrm{y}=\frac{4-4}{3} \\ &\Rightarrow \mathrm{x}=\frac{5}{3}, \mathrm{y}=0 \end{aligned}\]

=> coordinates of Q are \left(\frac{5}{3}, 0\right).

But the given coordinates of Q are \left(\frac{5}{3}, q\right)

\mathrm{So}, \mathrm{q}=0

Therefore, p=\frac{7}{3} and q=0