The points A (x1, y1), B (x2, y2) and C (x3 y3) are the vertices of ABC.
(i) Find the coordinates of points Q and R on medians BE and CF, respectively such that BQ : QE = 2 : 1 and CR : RF = 2 : 1
(ii) What are the coordinates of the centroid of the triangle ABC?
The points A (x1, y1), B (x2, y2) and C (x3 y3) are the vertices of ABC.
(i) Find the coordinates of points Q and R on medians BE and CF, respectively such that BQ : QE = 2 : 1 and CR : RF = 2 : 1
(ii) What are the coordinates of the centroid of the triangle ABC?

Solution:

(i) Let (p, q) be the coordinates of a point Q.

NCERT Exemplar Class 10 Maths Chapter 7 Ex. 7.4 Question 3-3

Provided,

The point Q (p, q),

Divide the line joining \mathrm{B}\left(\mathrm{x}{2}, \mathrm{y}{2}\right) and \mathrm{E}^{\left(\frac{\mathrm{x}{1}+\mathrm{x}{3}}{2}, \frac{\mathrm{y}{1}+\mathrm{y}{3}}{2}\right)} in the ratio 2: 1, Then,

Coordinates of Q=

\begin{array}{l}  {\left[\frac{2 \times\left(\frac{\mathrm{x}{1}+\mathrm{x}{3}}{2}\right)+1 \times \mathrm{x}{2}}{2+1}, \frac{2 \times\left(\frac{\mathrm{y}{1}+\mathrm{y}{3}}{2}\right)+1 \times \mathrm{y}{2}}{2+1}\right]} \\  =\left(\frac{\mathrm{x}{1}+\mathrm{x}{2}+\mathrm{x}{3}}{3}, \frac{\mathrm{y}{1}+\mathrm{y}{2}+\mathrm{y}{3}}{3}\right)  \end{array}

As, BE is the median of side CA, as a result BE divides AC in to two equal halves. As a result the mid-point of \mathrm{AC}= Coordinate of \mathrm{E}

\mathrm{E}=\left(\frac{\mathrm{x}{1}+\mathrm{x}{3}}{2}, \frac{\mathrm{y}{1}+\mathrm{y}{3}}{2}\right)

Therefore, the required coordinate of point Q;

Q=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)

Now,

Let the coordinates of a point E be (⍺, β)

Given,

Point R(\alpha, \beta) divide the line joining C(x 3, y 3) and F^{\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)} in the ratio 2: 1

Then the coordinates of \mathrm{R}

\begin{array}{l}  =\left[\frac{2 \times\left(\frac{\mathrm{x}{1}+\mathrm{x}{2}}{2}\right)+1 \times \mathrm{x}{3}}{2+1}, \frac{2 \times\left(\frac{\mathrm{y}{1}+\mathrm{y}{2}}{2}\right)+1 \times \mathrm{y}{3}}{2+1}\right] \\  =\left(\frac{\mathrm{x}{1}+\mathrm{x}{2}+\mathrm{x}{3}}{3}, \frac{\mathrm{y}{1}+\mathrm{y}{2}+\mathrm{y}{3}}{3}\right)  \end{array}

As, \mathrm{CF} is the median of side \mathrm{AB}.

Therefore, CF divides \mathrm{AB} in to two equal halves. \As a result mid-point of \mathrm{AB}= Coordinate of \mathrm{F}

F=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)

As a result, the required coordinate of point R;

=\left(\frac{\mathrm{x}{1}+\mathrm{x}{2}+\mathrm{x}{3}}{3}, \frac{\mathrm{y}{1}+\mathrm{y}{2}+\mathrm{y}{3}}{3}\right)

(ii) Coordinate of the ΔABC’s centroid ;

\begin{array}{l}  =\left(\frac{\text { Sum of all coordinates of all vertices }}{3}, \frac{\text { Sum of all coordinates of all vertices }}{3}\right) \\  =\left(\frac{\mathrm{x}{1}+\mathrm{x}{2}+\mathrm{x}{3}}{3}, \frac{\mathrm{y}{1}+\mathrm{y}{2}+\mathrm{y}{3}}{3}\right)  \end{array}