The position vectors of two points A and B are (2 \vec{a}+\vec{b}) and (\vec{a}-3 \vec{b}) respectively. Find the position vector of a point \mathrm{C} which divides \mathrm{AB} externally in the ratio 1: 2. Also, show that \mathrm{A} is the mid-point of the line segment \mathrm{CB}.
The position vectors of two points A and B are (2 \vec{a}+\vec{b}) and (\vec{a}-3 \vec{b}) respectively. Find the position vector of a point \mathrm{C} which divides \mathrm{AB} externally in the ratio 1: 2. Also, show that \mathrm{A} is the mid-point of the line segment \mathrm{CB}.

Solution:

Given: \overrightarrow{O A}=(2 \vec{a}+\vec{b})
\overrightarrow{O B}=(\vec{a}-3 \vec{b})
Position vector of \mathrm{C} which divides \mathrm{AB} in the ratio 1: 2 externally is given by
\begin{array}{l} \overrightarrow{O C}=\frac{(\vec{a}-3 \vec{b})-2(2 \vec{a}+\vec{b})}{1-2}=3 \vec{a}+5 \vec{b} \\ \overrightarrow{O A}=2 \vec{a}+\vec{b} \end{array}
\begin{array}{l} \overrightarrow{O B}=\vec{a}-3 \vec{b} \\ \overrightarrow{O C}=3 \vec{a}+5 \vec{b} \end{array}
If A is mid-point, then
OA can also be given by \frac{(3 \vec{a}+5 \vec{b})+(\vec{a}-3 \vec{b})}{2} \overrightarrow{O A}=2 \vec{a}+\vec{b} Which is true
Hence A is mid-point of CB