Classify the following function as injection, surjection or bijection: f: R → R, defined by

    \[\mathbf{f}\left( \mathbf{x} \right)\text{ }=\text{ }\mathbf{x}/({{\mathbf{x}}^{\mathbf{2}~}}+\text{ }\mathbf{1})\]

Classify the following function as injection, surjection or bijection: f: R → R, defined by

    \[\mathbf{f}\left( \mathbf{x} \right)\text{ }=\text{ }\mathbf{x}/({{\mathbf{x}}^{\mathbf{2}~}}+\text{ }\mathbf{1})\]

) Given f: R → R, defined by 

    \[f\left( x \right)\text{ }=\text{ }x/({{x}^{2~}}+\text{ }1)\]

Now we have to check for the given function is injection, surjection and bijection condition.

Injection condition:

Let x and y be any two elements in the domain (R), such that f(x) = f(y).

f(x) = f(y)

    \[x\text{ }/({{x}^{2~}}+\text{ }1)\text{ }=\text{ }y\text{ }/({{y}^{2}}~+\text{ }1)\]

    \[x\text{ }{{y}^{2}}+~x~=~{{x}^{2}}y~+~y\]

    \[x{{y}^{2~}}-\text{ }{{x}^{2}}y~+~x~-\text{ }y~=~0\]

    \[-x\text{ }y~\left( -y\text{ }+\text{ }x \right)\text{ }+~1~\left( x\text{ }-\text{ }y \right)~=~0\]

    \[\left( x\text{ }-\text{ }y \right)~\left( 1\text{ }\text{ }x\text{ }y \right)~=~0\]

    \[x~=~y~or~x~=\text{ }1/y\]

So, f is not an injection.

Surjection test:

Let y be any element in the co-domain (R), such that f(x) = y for some element x in R (domain).

f(x) = y

    \[x\text{ }/({{x}^{2}}~+\text{ }1)\text{ }=\text{ }y\]

    \[y\text{ }{{x}^{2~}}\text{ }x\text{ }+\text{ }y\text{ }=\text{ }0\]

    \[x\text{ }=\text{ }(-\left( -1 \right)\text{ }\pm \text{ }\sqrt{(1-4{{y}^{2}})})/\left( 2y \right)~if~y~\ne ~0\]

    \[=\text{ }(1\text{ }\pm \text{ }\sqrt{(1-4{{y}^{2}})})/\text{ }\left( 2y \right)\]

, which may not be in R

For example, if 

    \[y=1\]

, then

    \[\left( 1\text{ }\pm \text{ }\sqrt{\left( 1-4 \right)} \right)\text{ }/\text{ }\left( 2y \right)\text{ }=\text{ }\left( 1\text{ }\pm \text{ }i\text{ }\sqrt{3} \right)/2\]

, which is not in R

So, f is not surjection and f is not bijection.