Determine the values of x for which the function f(x)=x^{2}-6 x+9 is increasing or decreasing. Also, find the coordinates of the point on the curve y=x^{2}-6 x+9 where the normal is parallel to the line y=x+5.
Determine the values of x for which the function f(x)=x^{2}-6 x+9 is increasing or decreasing. Also, find the coordinates of the point on the curve y=x^{2}-6 x+9 where the normal is parallel to the line y=x+5.

Solution:

Given that f(x)=x^{2}-6 x+9
\begin{array}{l} \Rightarrow \\ f(x)=\frac{d}{d x}\left(x^{2}-6 x+9\right) \\ \Rightarrow f^{\prime}(x)=2 x-6 \\ \Rightarrow f^{\prime}(x)=2(x-3) \end{array}
For f(x) let us find critical point, we must have
\begin{array}{l} \Rightarrow f^{\prime}(x)=0 \\ \Rightarrow 2(x-3)=0 \\ \Rightarrow(x-3)=0 \\ \Rightarrow x=3 \end{array}
So, f^{\prime}(x)>0 if x>3 and f^{\prime}(x)<0 if x<3
Therefore, f(x) increases on (3, \infty) and f(x) is decreasing on interval x \in(-\infty, 3)
Let’s find the coordinates of point
Eq. of curve is f(x)=x^{2}-6 x+9
Slope of this curve is given by
\begin{array}{l} \Rightarrow m_{1}=\frac{d y}{d x} \\ \Rightarrow m_{1}=\frac{d}{d x}\left(x^{2}-6 x+9\right) \\ \Rightarrow m_{1}=2 x-6 \end{array}
Eq. of line is y=x+5
Slope of this curve is given by
\begin{array}{l} m_{2}=\frac{d y}{d x} \\ \Rightarrow m_{2}=\frac{d}{d x}(x+5) \\ \Rightarrow m_{2}=1 \end{array}
As slope of curve is parallel to line
So, they follow the relation
Therefore putting the value of \mathrm{x} in equation of curve, we obtain
\begin{array}{l} \Rightarrow y=x^{2}-6 x+9 \\ \Rightarrow y=\left(\frac{5}{2}\right)^{2}-6\left(\frac{5}{2}\right)+9 \\ \Rightarrow y=\frac{25}{4}-15+9 \\ \Rightarrow y=\frac{25}{4}-6 \\ \Rightarrow y=\frac{1}{4} \end{array}
Therefore the required coordinates is \left(\frac{5}{2}, \frac{1}{4}\right)