Find the intervals in which the following functions are increasing or decreasing.
(i) f(x)=2 x^{3}-15 x^{2}+36 x+1
(ii) f(x)=2 x^{3}+9 x^{2}+12 x+20
Find the intervals in which the following functions are increasing or decreasing.
(i) f(x)=2 x^{3}-15 x^{2}+36 x+1
(ii) f(x)=2 x^{3}+9 x^{2}+12 x+20

Solution:

(i) Given that f(x)=2 x^{3}-15 x^{2}+36 x+1
Now with respect to x differentiating above equation, we obtain
\begin{array}{l} f(x)=\frac{d}{d x}\left(2 x^{3}-15 x^{2}+36 x+1\right) \\ \Rightarrow f^{\prime}(x)=6 x^{2}-30 x+36 \end{array}
For f(x) we have to find critical point, we must have
\begin{array}{l} \Rightarrow f^{\prime}(x)=0 \\ \Rightarrow 6 x^{2}-30 x+36=0 \\ \Rightarrow 6\left(x^{2}-5 x+6\right)=0 \\ \Rightarrow 6\left(x^{2}-3 x-2 x+6\right)=0 \\ \Rightarrow x^{2}-3 x-2 x+6=0 \\ \Rightarrow(x-3)(x-2)=0 \\ \Rightarrow x=3,2 \end{array}
So, f^{\prime}(x)>0 if x<2 and x>3 and f^{\prime}(x)<0 if 2<x<3
Therefore, f(x) increases on (-\infty, 2) \cup(3, \infty) and f(x) is decreasing on interval x \in(2,3)

(ii) Given that f(x)=2 x^{3}+9 x^{2}+12 x+20
By differentiating above equation we obtain
\begin{array}{l} \Rightarrow \\ f(x)=\frac{d}{d x}\left(2 x^{3}+9 x^{2}+12 x+20\right) \\ \Rightarrow f^{\prime}(x)=6 x^{2}+18 x+12 \end{array}
For f(x) we have to find critical point we must have
\begin{array}{l} \Rightarrow f^{\prime}(x)=0 \\ \Rightarrow 6 x^{2}+18 x+12=0 \\ \Rightarrow 6\left(x^{2}+3 x+2\right)=0 \\ \Rightarrow 6\left(x^{2}+2 x+x+2\right)=0 \\ \Rightarrow x^{2}+2 x+x+2=0 \\ \Rightarrow(x+2)(x+1)=0 \\ \Rightarrow x=-1,-2 \end{array}
So, f^{\prime}(x)>0 if -2<x<-1 and f^{\prime}(x)<0 if x<-1 and x>-2
Therefore, f(x) increases on x \in(-2,-1) and f(x) is decreasing on interval (-\infty,-2) \cup(-2, \infty)