find the equation of the line which satisfy the given condition: Find equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9
find the equation of the line which satisfy the given condition: Find equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9

We realize that condition of the line making blocks an and b on x-and y-axis, individually, is

    \[\mathbf{x}/\mathbf{a}\text{ }+\text{ }\mathbf{y}/\mathbf{b}\text{ }=\text{ }\mathbf{1}\text{ }.\text{ }\ldots \text{ }\left( \mathbf{1} \right)\]

Given: amount of captures = 9

 

    \[\mathbf{a}\text{ }+\text{ }\mathbf{b}\text{ }=\text{ }\mathbf{9}\]

    \[\mathbf{b}\text{ }=\text{ }\mathbf{9}\text{ }\text{ }\mathbf{a}\]

Presently, substitute worth of b in the above condition, we get

 

    \[\mathbf{x}/\mathbf{a}\text{ }+\text{ }\mathbf{y}/\left( \mathbf{9}\text{ }\text{ }\mathbf{a} \right)\text{ }=\text{ }\mathbf{1}\]

Given: the line goes through the point (2, 2),

 

In this way,

    \[\mathbf{2}/\mathbf{a}\text{ }+\text{ }\mathbf{2}/\left( \mathbf{9}\text{ }\text{ }\mathbf{a} \right)\text{ }=\text{ }\mathbf{1}\]

    \[\left[ \mathbf{2}\left( \mathbf{9}\text{ }\text{ }\mathbf{a} \right)\text{ }+\text{ }\mathbf{2a} \right]/\mathbf{a}\left( \mathbf{9}\text{ }\text{ }\mathbf{a} \right)\text{ }=\text{ }\mathbf{1}\]

    \[\left[ \mathbf{18}\text{ }\text{ }\mathbf{2a}\text{ }+\text{ }\mathbf{2a} \right]/\mathbf{a}\left( \mathbf{9}\text{ }\text{ }\mathbf{a} \right)\text{ }=\text{ }\mathbf{1}\]

    \[\mathbf{18}/\mathbf{a}\left( \mathbf{9}\text{ }\text{ }\mathbf{a} \right)\text{ }=\text{ }\mathbf{1}\]

    \[\mathbf{18}\text{ }=\text{ }\mathbf{a}\text{ }\left( \mathbf{9}\text{ }\text{ }\mathbf{a} \right)\]

    \[\mathbf{18}\text{ }=\text{ }\mathbf{9a}\text{ }\text{ }\mathbf{a2}\]

    \[\mathbf{a2}\text{ }\text{ }\mathbf{9a}\text{ }+\text{ }\mathbf{18}\text{ }=\text{ }\mathbf{0}\]

After factorizing, we get

 

    \[\mathbf{a2}\text{ }\text{ }\mathbf{3a}\text{ }\text{ }\mathbf{6a}\text{ }+\text{ }\mathbf{18}\text{ }=\text{ }\mathbf{0}\]

    \[\left( \mathbf{a}\text{ }\text{ }\mathbf{3} \right)\text{ }\text{ }\mathbf{6}\text{ }\left( \mathbf{a}\text{ }\text{ }\mathbf{3} \right)\text{ }=\text{ }\mathbf{0}\]

    \[\left( \mathbf{a}\text{ }\text{ }\mathbf{3} \right)\text{ }\left( \mathbf{a}\text{ }\text{ }\mathbf{6} \right)\text{ }=\text{ }\mathbf{0}\]

    \[\mathbf{a}\text{ }=\text{ }\mathbf{3}\text{ }\mathbf{or}\text{ }\mathbf{a}\text{ }=\text{ }\mathbf{6}\]

Allow us to substitute in (1),

 

    \[\mathbf{Case}\text{ }\mathbf{1}\text{ }\left( \mathbf{a}\text{ }=\text{ }\mathbf{3} \right):\]

Then, at that point,

    \[\mathbf{b}\text{ }=\text{ }\mathbf{9}\text{ }\text{ }\mathbf{3}\text{ }=\text{ }\mathbf{6}\]

    \[\mathbf{x}/\mathbf{3}\text{ }+\text{ }\mathbf{y}/\mathbf{6}\text{ }=\text{ }\mathbf{1}\]

    \[\mathbf{2x}\text{ }+\text{ }\mathbf{y}\text{ }=\text{ }\mathbf{6}\]

    \[\mathbf{2x}\text{ }+\text{ }\mathbf{y}\text{ }\text{ }\mathbf{6}\text{ }=\text{ }\mathbf{0}\]

    \[\mathbf{Case}\text{ }\mathbf{2}\text{ }\left( \mathbf{a}\text{ }=\text{ }\mathbf{6} \right):\]

Then, at that point,

    \[\mathbf{b}\text{ }=\text{ }\mathbf{9}\text{ }\text{ }\mathbf{6}\text{ }=\text{ }\mathbf{3}\]

    \[\mathbf{x}/\mathbf{6}\text{ }+\text{ }\mathbf{y}/\mathbf{3}\text{ }=\text{ }\mathbf{1}\]

    \[\mathbf{x}\text{ }+\text{ }\mathbf{2y}\text{ }=\text{ }\mathbf{6}\]

    \[\mathbf{x}\text{ }+\text{ }\mathbf{2y}\text{ }\text{ }\mathbf{6}\text{ }=\text{ }\mathbf{0}\]

The condition of the line is

    \[\mathbf{2x}\text{ }+\text{ }\mathbf{y}\text{ }\text{ }\mathbf{6}\text{ }=\text{ }\mathbf{0}\text{ }\mathbf{or}\text{ }\mathbf{x}\text{ }+\text{ }\mathbf{2y}\text{ }\text{ }\mathbf{6}\text{ }=\text{ }\mathbf{0}.\]