(i) Calculate the total number of electrons present in one mole of methane. (ii) Find (a) the total number and (b) the total mass of neutrons in 7 mg of 14C. (Assume that mass of a neutron = 1.675 × 10–27 kg). (iii) Find (a) the total number and (b) the total mass of protons in 34 mg of NH3 at STP. Will the answer change if the temperature and pressure are changed?
(i) Calculate the total number of electrons present in one mole of methane. (ii) Find (a) the total number and (b) the total mass of neutrons in 7 mg of 14C. (Assume that mass of a neutron = 1.675 × 10–27 kg). (iii) Find (a) the total number and (b) the total mass of protons in 34 mg of NH3 at STP. Will the answer change if the temperature and pressure are changed?

(i) 1 molecule of methane contains 10 electrons (6 from carbon, 4 from hydrogen)

Therefore, 1 mole of methane contains 10*NA = 6.022*1024 electrons.

(ii) Number of neutrons in 14g (1 mol) of 14C = 8*NA = 4.817*1024 neutrons.

Number of neutrons in 7 mg (0.007g) = (0.007/14)*4.817*1024 = 2.409*1021 neutrons.

Mass of neutrons in 7 mg of 14C = (1.67493*10-27kg)*(2.409*1021) = 4.03*10-6kg

(iii) Molar mass of NH3 = 17g

Number of protons in 1 molecule of NH3 = 7+3 = 10

Therefore, 1 mole (17 grams) of NH3 contains 10*NA = 6.022*1024 protons.

34 mg of NH3 contains (34/1700)*6.022*1024 protons = 1.204*1022 protons.

Total mass accounted for by protons in 34 mg of NH3 = (1.67493*10-27kg)*(1.204*1022) = 2.017*10-5kg.