If f: R → R be the function defined by

    \[\mathbf{f}\left( \mathbf{x} \right)\text{ }=\text{ }\mathbf{4}{{\mathbf{x}}^{\mathbf{3}}}~+\text{ }\mathbf{7}\]

, show that f is a bijection.
If f: R → R be the function defined by

    \[\mathbf{f}\left( \mathbf{x} \right)\text{ }=\text{ }\mathbf{4}{{\mathbf{x}}^{\mathbf{3}}}~+\text{ }\mathbf{7}\]

, show that f is a bijection.

Given f: R → R is a function defined by 

    \[\mathbf{f}\left( \mathbf{x} \right)\text{ }=\text{ }\mathbf{4}{{\mathbf{x}}^{\mathbf{3}}}~+\text{ }\mathbf{7}\]

Injectivity:

Let x and y be any two elements in the domain (R), such that f(x) = f(y)

⇒ 

    \[4{{x}^{3~}}+\text{ }7~=~4{{y}^{3~}}+~7\]

⇒ 

    \[4{{x}^{3~}}=~4{{y}^{3}}\]

⇒ 

    \[{{x}^{3~}}=~{{y}^{3}}\]

⇒ x = y

So, f is one-one.

Surjectivity:

Let y be any element in the co-domain (R), such that f(x) = y for some element x in R (domain)

f(x) = y

⇒ 

    \[4{{x}^{3~}}+\text{ }7~=~y\]

⇒ 

    \[4{{x}^{3~}}=~y~-\text{ }7\]

    \[{{x}^{3}}~=\text{ }\left( y\text{ }\text{ }7 \right)/4\]

    \[x\text{ }=\sqrt[3]{\left( y-7 \right)/4}\]

in R

So, for every element in the co-domain, there exists some pre-image in the domain. f is onto.

Since, f is both one-to-one and onto, it is a bijection.