If \mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right], and show that \left(\mathrm{A}-\mathrm{A}^{\prime}\right) is skew-symmetric
If \mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right], and show that \left(\mathrm{A}-\mathrm{A}^{\prime}\right) is skew-symmetric

Solution:

We have \left(\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right).
The transpose of the matrix is an operation of making interchange of elements by the rule on positioned element a_{j i} shifted to new position a_{j i}.
The symmetric matrix is defined as similarity of transpose of matrix with it self. i.e, A^{T}=A.

The skew-symmetric matrix is defined as similarity of transpose of matrix with it self. i.e, A^{T}=-A.
A^{T}=\left(\begin{array}{ll} 2 & 3 \\ 4 & 5 \end{array}\right)^{T}=\left(\begin{array}{ll} 2 & 4 \\ 3 & 5 \end{array}\right)
Therefore finally we have
A-A^{T}=\left(\begin{array}{ll} 2 & 3 \\ 4 & 5 \end{array}\right)-\left(\begin{array}{cc} 2 & 4 \\ 3 & 5 \end{array}\right)=\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)
Here \left(A-A^{T}\right)^{T}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)^{T}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)=-\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)=A- A^{T} .
Therefore A+A^{T} is skew symmetric.