Let f : Q → Q : f(x) = 3x —4. Show that f is invertible and find f^{-1}.
Let f : Q → Q : f(x) = 3x —4. Show that f is invertible and find f^{-1}.

Solution:

\mathrm{f}(\mathrm{x})=3 \mathrm{x}-4 \quad (as given)
\mathrm{f}(\mathrm{x}) is invertible if \mathrm{f}(\mathrm{x}) is a bijection (i.e one-one onto function)
One-One function
Suppose \mathrm{p}, \mathrm{q} be two arbitrary elements in \mathrm{R}
Therefore, f(p)=f(q)
\begin{array}{l} \Rightarrow 3 \mathrm{p}-4=3 \mathrm{q}-4 \\ \Rightarrow 3 \mathrm{p}=3 \mathrm{q} \\ \Rightarrow \mathrm{p}=\mathrm{q} \end{array}
When f(p)=f(q), p=q
Therefore, \mathrm{f}(\mathrm{x}) is one-one function.
Onto function
Suppose \mathrm{v} be an arbitrary element of \mathrm{R} (Co-domain)
Then, f(x)=v
3 x-4=v
\Rightarrow 3 \mathrm{x}=\mathrm{v}+4 \Rightarrow \mathrm{x}=\frac{v+4}{3} Since \mathrm{v} \in \mathrm{Q}
\begin{array}{l} \Rightarrow \frac{v+4}{3} \in Q \\ f(x)=f\left(\frac{v+4}{3}\right) \end{array}
\begin{aligned} &=3\left(\frac{v+4}{3}\right)-4 \\ &=\mathrm{v}+4-4=\mathrm{v} \\ \Rightarrow \mathrm{f}(\mathrm{x}) &=\mathrm{v} \end{aligned}
Therefore this shows that every element in the co-domain has its pre-image in domain.
Hence, f(x) is onto function.
As a result, f(x) is invertible.
Now we need to find \mathrm{f}_{-1},
Suppose \mathrm{f}(\mathrm{x})=\mathrm{y}
y=3 x-4
Now, replace all x with y and all y with x.
Now, solve for y
\begin{array}{l} \Rightarrow x+4=3 y \\ \Rightarrow y=\frac{x+4}{3} \end{array}
Now replace \mathrm{y} with \mathrm{f}_{-1}(\mathrm{x})
As a result, \mathrm{f}_{-1}(\mathrm{x})=\frac{x+4}{3}