Show that the function f : R → R : f(x) = 2x + 3 is invertible and find f^{-1}.
Show that the function f : R → R : f(x) = 2x + 3 is invertible and find f^{-1}.

Solution:

\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3 (as given)
\mathrm{f}(\mathrm{x}) is invertible if \mathrm{f}(\mathrm{x}) is a bijection (i.e one-one onto function)
One-One function
Suppose \mathrm{p}, \mathrm{q} be two arbitrary elements in \mathrm{R}
Therefore, f(p)=f(q)
\begin{array}{l} \Rightarrow 2 p+3=2 q+3 \\ \Rightarrow 2 p=2 q \\ \Rightarrow p=q \end{array}
When f(p)=f(q), p=q
Therefore, \mathrm{f}(\mathrm{x}) is one-one function.
Onto function
Suppose v be an arbitrary element of R (Co-domain)
Therefore, f(x)=v
\begin{array}{l} 2 \mathrm{x}+3=\mathrm{v} \\ \Rightarrow 2 \mathrm{x}=\mathrm{v}-3 \\ \Rightarrow \mathrm{x}=\frac{v-3}{2} \end{array}
As \mathrm{v} \in \mathrm{R}
\Rightarrow \frac{v-3}{2} \in \mathrm{R}
\begin{array}{l} \begin{aligned} f(x) &=f\left(\frac{v-3}{2}\right) \\ &=2\left(\frac{v-3}{2}\right)+3 \\ &=v-3+3=v \\ \Rightarrow f & \end{aligned} \\ \Rightarrow f(x)=v \end{array}
It shows that every element in the co-domain has its pre-image in domain.
Therefore, f(x) is onto function.
Thus, f(x) is invertible.
Now we need to find \mathrm{f}-1,
Suppose \mathrm{f}(\mathrm{x})=\mathrm{y}
y=2 x+3
Now, replace all x with y and all y with x.
Now, solve for \mathrm{y}
\begin{array}{l} \Rightarrow x-3=2 y \\ \Rightarrow y=\frac{x-3}{2} \end{array}
Now replace y with \mathrm{f}_{-1}(\mathrm{x})
As a result, \mathrm{f}_{-1}(\mathrm{x})=\frac{x-3}{2}