Monochromatic radiation of wavelength 640.2 \mathrm{~nm}\left(1 \mathrm{~nm}=10^{-9} \mathrm{~m}\right) from a neon lamp irradiates photosensitive material made of caesium on tungsten. The stopping voltage is measured to be 0.54 \mathrm{~V} . The source is replaced by an iron source and its 427.2 \mathrm{~nm} line irradiates the same photocell. Predict the new stopping voltage.
Monochromatic radiation of wavelength 640.2 \mathrm{~nm}\left(1 \mathrm{~nm}=10^{-9} \mathrm{~m}\right) from a neon lamp irradiates photosensitive material made of caesium on tungsten. The stopping voltage is measured to be 0.54 \mathrm{~V} . The source is replaced by an iron source and its 427.2 \mathrm{~nm} line irradiates the same photocell. Predict the new stopping voltage.

Wavelength of the monochromatic radiation is given as \lambda=640.2 \mathrm{~nm}=640.2 \times 10^{-9} \mathrm{~m}

Stopping potential of the neon lamp is also given as V_{0}=0.54 \mathrm{~V}

Charge on an electron, e=1.6 \times 10^{-19} \mathrm{C}

Planck’s constant, h=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}

The following relation can be derived from photoelectric effect,
eV-{o}=hv-\phi_{o}

Work function of the metal is,
\Phi_{0}=\mathrm{hv}-\mathrm{eV}_{0}

=(\mathrm{hc} / \lambda)-\mathrm{eV}_{0}

=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{640.2 \times 10^{-9}}-1.6 \times 10^{-19} \times 0.54

=3.093 \times 10^{-19}-0.864 \times 10^{-19}

=2.229 \times 10^{-19} \mathrm{~J}

The radiation emitted by the iron source has a wavelength of \lambda^{\prime}=427.2 \mathrm{~nm}=427.2 \times 10^{-9} \mathrm{~m}

Let \mathrm{V}_{0} ‘ be the new stopping potential

Therefore, eV_{0^{'}}=(hc/\lambda^{'})-\phi_{o}

    \[=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{427.2 \times 10^{-9}}-2.229 \times 10^{-19}\]

=4.63 \times 10^{-19}-2.229 \times 10^{-19}

=2.401 \times 10^{-19} \mathrm{~J}

\mathrm{V}_{0}^{6}=2.401 \times 10^{-19} \mathrm{~J} / 1.6 \times 10^{-19} \mathrm{~J}

=1.5 \mathrm{eV}

The new stopping potential =1.50 \mathrm{eV}