Reduce the following equations into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis. (i) x – √3y + 8 = 0 (ii) y – 2 = 0
Reduce the following equations into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis. (i) x – √3y + 8 = 0 (ii) y – 2 = 0

(i) x – √3y + 8 = 0

 

Given:

 

The condition is

    \[\mathbf{x}\text{ }\text{ }\surd \mathbf{3y}\text{ }+\text{ }\mathbf{8}\text{ }=\text{ }\mathbf{0}\]

Condition of line in typical structure is given by

    \[\mathbf{x}\text{ }\mathbf{cos}\text{ }\mathbf{\theta }\text{ }+\text{ }\mathbf{y}\text{ }\mathbf{sin}\text{ }\mathbf{\theta }\text{ }=\text{ }\mathbf{p}\]

where ‘θ’ is the point among opposite and positive x pivot and ‘p’ is opposite separation from beginning.

 

So presently,

    \[\mathbf{x}\text{ }\text{ }\surd \mathbf{3y}\text{ }+\text{ }\mathbf{8}\text{ }=\text{ }\mathbf{0}\]

    \[\mathbf{x}\text{ }\text{ }\surd \mathbf{3y}\text{ }=\text{ }-\text{ }\mathbf{8}\]

Separation both the sides by

    \[\surd \left( \mathbf{12}\text{ }+\text{ }\left( \surd \mathbf{3} \right)\mathbf{2} \right)\text{ }=\text{ }\surd \left( \mathbf{1}\text{ }+\text{ }\mathbf{3} \right)\text{ }=\text{ }\surd \mathbf{4}\text{ }=\text{ }\mathbf{2}\]

    \[\mathbf{x}/\mathbf{2}\text{ }\text{ }\surd \mathbf{3y}/\mathbf{2}\text{ }=\text{ }-\text{ }\mathbf{8}/\mathbf{2}\]

    \[\left( -\text{ }\mathbf{1}/\mathbf{2} \right)\mathbf{x}\text{ }+\text{ }\surd \mathbf{3}/\mathbf{2y}\text{ }=\text{ }\mathbf{4}\]

This is as:

    \[\mathbf{x}\text{ }\mathbf{cos}\text{ }\mathbf{120o}\text{ }+\text{ }\mathbf{y}\text{ }\mathbf{sin}\text{ }\mathbf{120o}\text{ }=\text{ }\mathbf{4}\]

The above condition is of the structure, where

    \[\mathbf{\theta }\text{ }=\text{ }\mathbf{120}{}^\circ \]

and

    \[\mathbf{p}\text{ }=\text{ }\mathbf{4}.\]

Opposite distance of line from beginning

    \[=\text{ }\mathbf{4}\]

Point among opposite and positive x –axis

    \[=\text{ }\mathbf{120}{}^\circ \]

    \[\left( \mathbf{ii} \right)\text{ }\mathbf{y}\text{ }\text{ }\mathbf{2}\text{ }=\text{ }\mathbf{0}\]

Given:

 

The condition is

    \[\mathbf{y}\text{ }\text{ }\mathbf{2}\text{ }=\text{ }\mathbf{0}\]

Condition of line in typical structure is given by

    \[\mathbf{x}\text{ }\mathbf{cos}\text{ }\mathbf{\theta }\text{ }+\text{ }\mathbf{y}\text{ }\mathbf{sin}\text{ }\mathbf{\theta }\text{ }=\text{ }\mathbf{p}\]

where ‘θ’ is the point among opposite and positive x pivot and ‘p’ is opposite separation from beginning.

 

So presently,

    \[\mathbf{0}\text{ }\times \text{ }\mathbf{x}\text{ }+\text{ }\mathbf{1}\text{ }\times \text{ }\mathbf{y}\text{ }=\text{ }\mathbf{2}\]

 

Separation the two sides by

    \[\surd \left( \mathbf{02}\text{ }+\text{ }\mathbf{12} \right)\text{ }=\text{ }\surd \mathbf{1}\text{ }=\text{ }\mathbf{1}\]

    \[\mathbf{0}\text{ }\left( \mathbf{x} \right)\text{ }+\text{ }\mathbf{1}\text{ }\left( \mathbf{y} \right)\text{ }=\text{ }\mathbf{2}\]

This is as:

    \[\mathbf{x}\text{ }\mathbf{cos}\text{ }\mathbf{90o}\text{ }+\text{ }\mathbf{y}\text{ }\mathbf{sin}\text{ }\mathbf{90o}\text{ }=\text{ }\mathbf{2}\]

The above condition is of the structure

    \[\mathbf{x}\text{ }\mathbf{cos}\text{ }\mathbf{\theta }\text{ }+\text{ }\mathbf{y}\text{ }\mathbf{sin}\text{ }\mathbf{\theta }\text{ }=\text{ }\mathbf{p}\]

, where

    \[\mathbf{\theta }\text{ }=\text{ }\mathbf{90}{}^\circ \]

and

    \[\mathbf{p}\text{ }=\text{ }\mathbf{2}.\]

 

Opposite distance of line from beginning

    \[=\text{ }\mathbf{2}\]

Point among opposite and positive x –axis

    \[=\text{ }\mathbf{90}{}^\circ \]