Show that the relation \mathrm{R} on \mathrm{N} \times \mathrm{N}, defined by (a, b) R(c, d) \Leftrightarrow a+d=b+c is an equivalent relation.
Show that the relation \mathrm{R} on \mathrm{N} \times \mathrm{N}, defined by (a, b) R(c, d) \Leftrightarrow a+d=b+c is an equivalent relation.

Solution:

If R is Reflexive, Symmetric and Transitive, then R is an equivalence relation.

Reflexivity:
Suppose a and \mathrm{b} be an arbitrary element of \mathrm{N} \times \mathrm{N}
\begin{array}{l} \Rightarrow(\mathrm{a}, \mathrm{b}) \in \mathrm{N} \times \mathrm{N} \\ \Rightarrow(\mathrm{a}, \mathrm{b}) \in \mathrm{N} \\ \Rightarrow \mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a} \\ \Rightarrow(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{b}, \mathrm{a}) \end{array}
Therefore, \mathrm{R} is reflexive.

Symmetric:
Suppose (a, b) and (c, d) \in N \times N such that (a, b) R(c, d)
\begin{array}{l} \Rightarrow \mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c} \\ \Rightarrow \mathrm{b}+\mathrm{c}=\mathrm{a}+\mathrm{d} \\ \Rightarrow \mathrm{c}+\mathrm{b}=\mathrm{d}+\mathrm{a} \\ \Rightarrow(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{a}, \mathrm{b}) \end{array}
Therefore, \mathrm{R} is symmetric.

Transitivity:
Suppose (a, b),(c, d),(e, f) \in N \times N such that (a, b) R(c, d) and (c, d) R (\mathrm{e}, \mathrm{f})
\Rightarrow \mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c} and \mathrm{c}+\mathrm{f}=\mathrm{d}+\mathrm{e}
On adding both the equations we obtain
\begin{array}{l} \Rightarrow a+d+c+f=b+c+d+e \\ \Rightarrow a+f=b+e \\ \Rightarrow(a, b) R(e, f) \end{array}
\Rightarrow \mathrm{R} is transitive.
As a result, \mathrm{R} is an equivalence relation.