9. Using Pythagoras theorem determine the length of AD in terms of b and c shown in Fig

    \[.\text{ }\mathbf{4}.\mathbf{219}\]

9. Using Pythagoras theorem determine the length of AD in terms of b and c shown in Fig

    \[.\text{ }\mathbf{4}.\mathbf{219}\]

Solution:

We have,

In ∆BAC, by Pythagoras theorem, we have

    \[\begin{array}{*{35}{l}} <!-- /wp:paragraph --> <!-- wp:paragraph -->    B{{C}^{2}}~=\text{ }A{{B}^{2}}~+\text{ }A{{C}^{2}}  \\ <!-- /wp:paragraph --> <!-- wp:paragraph -->    \Rightarrow B{{C}^{2}}~=\text{ }{{c}^{2}}~+\text{ }{{b}^{2}}  \\ <!-- /wp:paragraph --> <!-- wp:paragraph -->    \Rightarrow BC~=\text{ }\surd ({{c}^{2}}~+\text{ }{{b}^{2}})  \\ <!-- /wp:paragraph --> <!-- wp:paragraph --> \end{array}\]

                                                       

    \[\]

In ∆ABD and ∆CBA

∠B = ∠B                      [Common]

∠ADB = ∠BAC             

    \[\left[ Each\text{ }90{}^\circ  \right]\]

Then, ∆ABD ͏~ ∆CBA   [By AA similarity]

Thus,

AB/ CB = AD/ CA [Corresponding parts of similar triangles are proportional]

    \[\begin{array}{*{35}{l}} <!-- /wp:paragraph --> <!-- wp:paragraph -->    c/\text{ }\surd ({{c}^{2}}~+\text{ }{{b}^{2}})\text{ }=\text{ }AD/\text{ }b  \\ <!-- /wp:paragraph --> <!-- wp:paragraph -->    \therefore AD\text{ }=\text{ }bc/\text{ }\surd ({{c}^{2}}~+\text{ }{{b}^{2}})  \\ <!-- /wp:paragraph --> <!-- wp:paragraph --> \end{array}\]