For the response at 298 K,

    \[\begin{array}{*{35}{l}}    2A\text{ }+\text{ }B\text{ }\to \text{ }C\text{ }H\text{ }=\text{ }400\text{ }kJ\text{ }mol1  \\    ~  \\    what's\text{ }more,\text{ }S\text{ }=\text{ }0.2\text{ }kJ\text{ }K1\text{ }mol1  \\ \end{array}\]

At what temperature will the response become unconstrained believing ∆H and ∆S to be consistent over the temperature range?
For the response at 298 K,

    \[\begin{array}{*{35}{l}}    2A\text{ }+\text{ }B\text{ }\to \text{ }C\text{ }H\text{ }=\text{ }400\text{ }kJ\text{ }mol1  \\    ~  \\    what's\text{ }more,\text{ }S\text{ }=\text{ }0.2\text{ }kJ\text{ }K1\text{ }mol1  \\ \end{array}\]

At what temperature will the response become unconstrained believing ∆H and ∆S to be consistent over the temperature range?

Solution:

From the articulation,

 

    \[G\text{ }=\text{ }H\text{ }\text{ }TS\]

Expecting the response at balance,

 

∆T for the response would be:

    \[\begin{array}{*{35}{l}} \left( G\text{ }=\text{ }0\text{ }at\text{ }balance \right)  \\ ~  \\ T\text{ }=\text{ }2000\text{ }K  \\ \end{array}\]

For the response to be unconstrained, ∆G should be negative. Consequently, for the offered response to be unconstrained, T ought to be more prominent than 2000 K.