Solve:12 + 32 + 52 + … + (2n – 1)2 = 1/3 n (4n2 – 1)
Solve:12 + 32 + 52 + … + (2n – 1)2 = 1/3 n (4n2 – 1)

Let ,

P(n) be the given equation,

Let us check for

    \[n\text{ }=\text{ }1,\]

    \[P\text{ }\left( 1 \right):\text{ }{{\left( 2.1\text{ }\text{ }1 \right)}^{2}}~=\text{ }1/3\text{ }\times \text{ }1\text{ }\times \text{ }\left( 4\text{ }\text{ }1 \right)\]

    \[:\text{ }1\text{ }=\text{ }1\]

P (n) is true for

    \[n\text{ }=\text{ }1.\]

Now, let us check for P (n) is true for

    \[n\text{ }=\text{ }k\]

, and have to prove that P (k + 1) is true.

 

    \[P\text{ }\left( k \right):\text{ }{{1}^{2}}~+\text{ }{{3}^{2}}~+\text{ }{{5}^{2}}~+\text{ }\ldots \text{ }+\text{ }{{\left( 2k\text{ }\text{ }1 \right)}^{2}}~=\text{ }1/3\text{ }k\text{ }\left( 4{{k}^{2}}~\text{ }1 \right)\text{ }\ldots \text{ }\left( i \right)\]

So,

    \[{{1}^{2}}~+\text{ }{{3}^{2}}~+\text{ }{{5}^{2}}~+\text{ }\ldots \text{ }+\text{ }{{\left( 2k\text{ }\text{ }1 \right)}^{2}}~+\text{ }{{\left( 2k\text{ }+\text{ }1 \right)}^{2}}\]

Now, substituting the value of P (k) we get,

    \[=\text{ }1/3\text{ }k\text{ }\left( 4{{k}^{2}}~\text{ }1 \right)\text{ }+\text{ }{{\left( 2k\text{ }+\text{ }1 \right)}^{2}}~\]

by using equation (i)

    \[=\text{ }1/3\text{ }k\text{ }\left( 2k\text{ }+\text{ }1 \right)\text{ }\left( 2k\text{ }\text{ }1 \right)\text{ }+\text{ }{{\left( 2k\text{ }+\text{ }1 \right)}^{2}}\]

or,

    \[=\text{ }\left( 2k\text{ }+\text{ }1 \right)\text{ }\left[ \left\{ k\left( 2k-1 \right)/3 \right\}\text{ }+\text{ }\left( 2k+1 \right) \right]\]

or,

    \[=\text{ }\left( 2k\text{ }+\text{ }1 \right)\text{ }\left[ 2{{k}^{2}}~\text{ }k\text{ }+\text{ }3\left( 2k+1 \right) \right]\text{ }/\text{ }3\]

or,

    \[=\text{ }\left( 2k\text{ }+\text{ }1 \right)\text{ }\left[ 2{{k}^{2}}~\text{ }k\text{ }+\text{ }6k\text{ }+\text{ }3 \right]\text{ }/\text{ }3\]

    \[=\text{ }\left[ \left( 2k+1 \right)\text{ }2{{k}^{2}}~+\text{ }5k\text{ }+\text{ }3 \right]\text{ }/3\]

or,

    \[=\text{ }\left[ \left( 2k+1 \right)\text{ }\left( 2k\left( k+1 \right) \right)\text{ }+\text{ }3\text{ }\left( k+1 \right) \right]\text{ }/3\]

    \[=\text{ }\left[ \left( 2k+1 \right)\text{ }\left( 2k+3 \right)\text{ }\left( k+1 \right) \right]\text{ }/3\]

or,

    \[=\text{ }\left( k+1 \right)/3\text{ }\left[ 4{{k}^{2}}~+\text{ }6k\text{ }+\text{ }2k\text{ }+\text{ }3 \right]\]

    \[=\text{ }\left( k+1 \right)/3\text{ }\left[ 4{{k}^{2}}~+\text{ }8k\text{ }\text{ }1 \right]\]

or,

    \[=\text{ }\left( k+1 \right)/3\text{ }\left[ 4{{\left( k+1 \right)}^{2}}~\text{ }1 \right]\]

P (n) is true for

    \[n\text{ }=\text{ }k\text{ }+\text{ }1\]

Hence, P (n) is true for all n ∈ N