The hydrogen atom has only one electron, so mutual repulsion between electrons is absent. However, in multielectron atoms mutual repulsion between the electrons is significant. How does this affect the energy of an electron in the orbitals of the same principal quantum number in multielectron atoms?
The hydrogen atom has only one electron, so mutual repulsion between electrons is absent. However, in multielectron atoms mutual repulsion between the electrons is significant. How does this affect the energy of an electron in the orbitals of the same principal quantum number in multielectron atoms?

Hydrogen atom has only one electron, so the mutual repulsion between the electrons is non-existent. However, in multielectron atoms the interaction between electrons is important. This is because, in the hydrogen atom, electron energy is determined by n value whereas in the multielectron atom, it is determined by the value of n+l . Thus, for a given principal quantum, the number of electrons in the s, p, d and f-orbtials have different energy.