. Think about the accompanying response among zinc and oxygen and pick the right alternatives out of the choices given underneath :

    \[2\text{ }Zn\text{ }\left( s \right)\text{ }+\text{ }O2\text{ }\left( g \right)\text{ }\to \text{ }2\text{ }ZnO\text{ }\left( s \right)\text{ };\text{ }H\text{ }=\text{ }\text{ }693.8\text{ }kJ\text{ }mol1\]

(i) The enthalpy of two moles of ZnO is not exactly the absolute enthalpy of two moles of Zn and one mole of oxygen by 693.8 kJ. (ii) The enthalpy of two moles of ZnO is more than the absolute enthalpy of two moles of Zn and one mole of oxygen by 693.8 kJ. (iii) 693.8 kJ mol–1 energy is advanced in the response. (iv) 693.8 kJ mol–1 energy is caught up in the response.
. Think about the accompanying response among zinc and oxygen and pick the right alternatives out of the choices given underneath :

    \[2\text{ }Zn\text{ }\left( s \right)\text{ }+\text{ }O2\text{ }\left( g \right)\text{ }\to \text{ }2\text{ }ZnO\text{ }\left( s \right)\text{ };\text{ }H\text{ }=\text{ }\text{ }693.8\text{ }kJ\text{ }mol1\]

(i) The enthalpy of two moles of ZnO is not exactly the absolute enthalpy of two moles of Zn and one mole of oxygen by 693.8 kJ. (ii) The enthalpy of two moles of ZnO is more than the absolute enthalpy of two moles of Zn and one mole of oxygen by 693.8 kJ. (iii) 693.8 kJ mol–1 energy is advanced in the response. (iv) 693.8 kJ mol–1 energy is caught up in the response.

solution:

 

Choice (I) and (iii) are the appropriate responses