From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.
(a) 3 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}(g) Rate =\mathrm{k}[\mathrm{NO}]^{2}
(b) \mathrm{H}_{2} \mathrm{O}_{2}(a q)+3 \mathrm{I}^{-}(a q)+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(I)+\mathrm{I}_{3}^{-}Rate =\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]
(c) \mathrm{CH}_{3} \mathrm{CHO}(g) \rightarrow \mathrm{CH}_{4}(g)+\mathrm{CO}(g) Rate =\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{\frac{3}{2}} (d) \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{HCl}(g) Rate =\mathrm{k}\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right]
From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.
(a) 3 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}(g) Rate =\mathrm{k}[\mathrm{NO}]^{2}
(b) \mathrm{H}_{2} \mathrm{O}_{2}(a q)+3 \mathrm{I}^{-}(a q)+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(I)+\mathrm{I}_{3}^{-}Rate =\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]
(c) \mathrm{CH}_{3} \mathrm{CHO}(g) \rightarrow \mathrm{CH}_{4}(g)+\mathrm{CO}(g) Rate =\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{\frac{3}{2}} (d) \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{HCl}(g) Rate =\mathrm{k}\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right]

Solution:
(a) Given rate =k[N O]^{2}
Therefore, order of the reaction =2
Dimensions of k=\frac{\text { Rete }}{[N O]^{\sharp}}

    \[\begin{array}{l} =\frac{\operatorname{mal} L^{-1} \mathrm{~s}^{-1}}{\left(\mathrm{~mol} L^{-1}\right)^{2}} \\ =\frac{\operatorname{mol} L^{-1} \mathrm{~s}^{-1}}{\operatorname{mol}^{-2} L^{-1}} \\ =L \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \end{array}\]

(b) Given rate =k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]
Therefore, order of the reaction =2
Dimensions of k=\frac{R a t e}{\left.\left[H_{2} O_{2}\right] I^{-}\right]}

    \[\begin{array}{l} =\frac{m o l}{\left(\operatorname{mol} L^{-1}\right)\left(\operatorname{mol} L^{-1}\right)} \\ =L m o l^{-1} s^{-1} \end{array}\]

(c) Given rate =k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{\frac{1}{2}}
Therefore, the order of reaction =\frac{3}{2}
Chemical Kinetics
Dimensions of k=\frac{\text { Rate }}{\left[\mathrm{CH}_{3} \mathrm{CHO}_{1}^{\frac{1}{2}}\right.}
=\frac{m o l}{\left(m o l^{-1} z^{-1}\right)^{\frac{2}{2}}} =\frac{m o l}{m o l^{-1} \frac{1}{2}-1^{\frac{1}{2}}} L^{\frac{1}{2}} m o l^{-\frac{1}{2}} s^{-1}
(d) Given rate =\mathrm{k}=\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right]
Therefore, order of the reaction =1
Dimension of k=\frac{\text { Rote }}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right.}

    \[\begin{array}{l} =\frac{\operatorname{mad} L^{-1} s^{-1}}{\operatorname{mal} L^{-1}} \\ =s^{-1} \end{array}\]