Physics

Two resistors A and B of 4 ohm and 6 ohm, respectively are connected in parallel. The combination is connected across a 6 volt battery of negligible resistance. Calculate: (i) the power supplied by the battery, (ii) the power dissipated in each resistor.

Provided, RA = 4 ohm resistance RB = 6 ohm resistance V = 6 V is the voltage. (i)Due to the parallel connection of the resistances 1 / R = 1 / 4 + 1 / 6 1 / R = 10 / 24 R = 2.4 ohm We are aware of...

read more

A bulb is connected to a battery of p.d. 4 V and internal resistance 2.5 ohm. A steady current of 0.5 A flows through the circuit. Calculate:
(i)The total energy supplied by the battery in 10 minutes,
(ii)The resistance of the bulb, and
(iii)The energy dissipated in the bulb in 10 minutes.

We know that, V = 4 V is the voltage. 2.5 ohm is the battery resistance. I = 0.5 A (current) E = V2t / R (Energy supplied by the battery) t = 10 × 60 t = 600 sec R = V / I R = 4 / 0.5 R = 8 ohm E =...

read more

Three heaters each rated 250 W, 100 V are connected in parallel to a 100 V supply. Calculate:
(i)The total current taken from the supply,
(ii)The resistance of each heater, and
(iii)The energy supplied in kWh to the three heaters in 5 hours.

Given, P = 250 W V = 100 V is the voltage. I =?  (Current flowing through each heater) Because  P = VI I = P / V I = 250 / 100 I = 2.5 A ∴ For the three heaters, current was taken. = 3 × 2.5 = 7.5 A...

read more

(i)State and define the household unit of electricity.
(ii)What is the voltage of the electricity that is generally supplied to a house?
(iii) What is consumed while using different electrical appliances, for which electricity bills are paid?

(i)The residential unit of electricity is the kilowatt hour (kWh). When an electrical device with a power of 1 kW is operated for one hour, the electrical energy used is A kilowatt hour is a unit of...

read more

A cell of e.m.f. 2 V and internal resistance 1.2 Ω is connected to an ammeter of resistance 0.8 Ω and two resistors of 4.5 Ω and 9 Ω as shown in fig.
Find:
(a) The reading of the ammeter,
(b) The potential difference across the terminals of the cells, and
(c) The potential difference across the 4.5 ohm resistor.

We know that, \({{R}_{eq}}\) = 1.2 + 0.8 + (R1R2) / R1 + R2 \({{R}_{eq}}\) = 2 + 40.5 / 13.5 This implies that \({{R}_{eq}}\) = 5 ohm (a) So, the current is I = \({{E}_{cell}}\) /\({{R}_{eq}}\) I =...

read more

The circuit diagram in figure shows three resistors 2 ohm, 4 ohm and R ohm connected to a battery of e.m.f. 2 V and internal resistance 3 ohm. If main current of 0.25 A flows through the circuit, find:
(a) the p.d. across the 4 ohm resistor
(b) the p.d. across the internal resistance of the cell,
(c) the p.d. across the R ohm or 2 ohm resistor, and
(d) the value of R.

(a) According to the question, find  p.d. across the resistor of 4 ohm. Given, R = 4 ohm I = 0.25 A Using ohm's law V = IR V = 0.25 × 4 V = 1 V (b) According to the question, find  p.d. across the...

read more

A battery of emf 15 V and internal resistance 3 ohm is connected to two resistors 3 ohm and 6 ohm connected in parallel. Find (a) the current through the battery (b) p.d. between the terminals of the battery (c) the current in 3 ohm resistor (d) the current in 6 ohm resistor.

(a) According to the question, When In parallel 1 / R = 1 / 3 + 1 / 6 1 / R = 1 / 2 R = 2 ohm If r = 3 W ε = 15 V ε = I (R + r) 15 = I (2 + 3) I = 3 A (b)  Now find V R = 2 ohm Using ohm's law V =...

read more

A particular resistance wire has a resistance of 3 ohm per meter. Find:
(a) The total resistance of three lengths of this wire each 1.5 m long, in parallel.
(b) The potential difference of the battery which gives a current of 2 A in each of the 1.5 m length when connected in the parallel to the battery (assume that resistance of the battery is negligible).
(c) The resistance of 5 m length of a wire of the same material, but with twice the area of cross section

(a) Wire resistance per metre = 3 ohm As a result, the resistance of three 1.5 m long sections of this wire = 3 × 1.5 = 4.5 W 1 / R = 1 / 4.5 + 1 / 4.5 + 1 / 4.5 1 / R = 3 / 4.5 R = 1.5 ohm (b) I =...

read more

A cell of e.m.f. ε and internal resistance r sends current 1.0 A when it is connected to an external resistance 1.9 ohm. But its sends current 0.5 A when it is connected to an external resistance of 3.9 ohm. Calculate the values of e and r.

In the first instance, I = 1 A, R = 1.9 ohm ε = I (R + r) = 1 (1.9 + r) = 1.9 + r [1] In the second scenario, I = 0.5 A, R = 3.9 ohm ε = I (R + r) = 0.5 (3.9 + r) = 1.95 + 0.5r [2] [1] and [2] are...

read more

A cell of emf 1.8 V and internal resistance 2 ohm is connected in series with an ammeter of resistance 0.7 ohm and resistance of 4.5 ohm as shown in figure.
(a) What would be the reading of the ammeter?
(b) What is the potential difference across the terminals of the cell?

According to the question, (a) ε = 1.8 V Total resistance = 2 + 4.5 + 0.7 = 7.2 W I =? I = ε / R I = 1.8 / 7.2 I = 0.25 A (b) I = 0.25 A [calculated in (a) part] internal resistance total resistance...

read more

The diagram in figure shows a cell of e.m.f. ε = 2 volt and internal resistance r = 1 ohm connected to an external resistance R = 4 ohm. The ammeter A measures the current in the circuit and the voltmeter V measures the terminal voltage across the cell. What will be the readings of the ammeter and voltmeter when (i) the key K is open, and (ii) the key K is closed

(i) Ammeter reading = 0 , due to lack of current Voltage V = ε – Ir V = 2 – 0 × 1 V = 2 volt (ii) The reading on the ammeter I = ε / (R + r) I = 4 + 1 / 2 I = 2/5 I=0.4 amp Measurement of voltage...

read more

State how are the two resistors joined with a battery in each of the following cases when:
(a) same current flows in each resistor
(b) potential difference is same across each resistor.
(c) equivalent resistance is less than either of the two resistances.
(d) equivalent resistance is more than either of the two resistances.

(a) The two resistors are connected in parallel. (b) The two resistors are connected in series. (c) The two resistors are connected in series. (d) The two resistors are connected in parallel.

read more

A cell of e.m.f. ε and internal resistance r is used to send current to an external resistance R. Write expressions for (a) the total resistance of circuit, (b) the current drawn from the cell, (c) the p.d. across the cell, and (d) voltage drop inside the cell.

(a)  total resistance  = R + r (b) The amount of current drained from the cell ε = V + v = IR + Ir = I (R + r) I = ε / (R + r) (c) p.d. across the cell: [ε / (R + r)] × R (d) voltage drop inside the...

read more

The filament of a bulb takes a current 100 mA when potential difference across it is 0.2 V. When the potential difference across it becomes 1.0 V, the current becomes 400 mA. Calculate the resistance of filament in each case and account for the difference.

Using Ohm’s law V = IR R = V / I R1 = V1 / I1 R1 = 0.2 / 0.1 R1 = 2 ohm Simultaneously R2 = V2 / I2 R2 = 1 / 0.4 R2 = 2.5 ohm The wire's resistance increases as the temperature rises. As a result,...

read more

In an experiment of verification of Ohm’s law, following observations are obtained.
Draw a characteristic V-I graph and use this graph to find:
(a) potential difference V when the current I is 0.5 A.
(b) current I when the potential difference V is 0.75 V.
(c) resistance in circuit

(a) When the current is 0.5 A, the potential difference is 1.25 V. (b) When the potential difference is 0.75 V, current is 0.3 A. (c) Because the graph is linear, resistance may be calculated from...

read more

(a) Name the particles which are responsible for the flow of current in a metallic wire.
(b) Explain the flow of current in a metallic wire on the basis of movement of the particles named by you above in part (a).
(c) What is the cause of resistance offered by the metallic wire in the flow of current through it?

(a) In a metallic wire, free electrons are the particles responsible for current flow. (b) In metals, free electrons are the moving charges that cause electricity to conduct. If ‘n' electrons pass...

read more

Figure below show two rays A and B travelling from water to air. If the critical angle for water- air surface is 48°, complete the ray diagram showing the refracted rays for each. State conditions when the ray will suffer total internal reflection.

Solution ; There are two prerequisites for total introspective reflection: (i) Light must pass through a denser media before reaching a rarer medium. (ii) The incidence angle must be larger than or...

read more

Water in a pond appears to be only three-quarters of its actual depth. (a) What property of light is responsible for this observation? Illustrate your answer with the help of a ray diagram. (b) How is the refractive index of water calculated from its real and apparent depths?

Solutions: (a) This observation is due to refraction of light. Light is bent away from the normal due to refraction from a denser media to a rarer medium. (b) Assume that an object B is located at...

read more

A light ray of yellow colour is incident on an equilateral glass prism at an angle of incidence equal to 48o and suffers minimum deviation by an angle of 36o. (i) What will be the angle of emergence? (ii) If the angle of incidence is changed to (a) 30o, (b) 60o, state whether the angle of deviation will be equal to less than or more than 36o.

Solution: (i) We know that the ray suffers minimum deviation in an equilateral prism. So we can write i1 = i2 Therefore, i2 = 480 (ii) (a) If the incidence angle is increased to 30 degrees ,...

read more